Defining preBötzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo

نویسندگان

  • Yan Cui
  • Kaiwen Kam
  • David Sherman
  • Wiktor A. Janczewski
  • Yu Zheng
  • Jack L. Feldman
چکیده

Normal breathing in rodents requires activity of glutamatergic Dbx1-derived (Dbx1(+)) preBötzinger Complex (preBötC) neurons expressing somatostatin (SST). We combined in vivo optogenetic and pharmacological perturbations to elucidate the functional roles of these neurons in breathing. In transgenic adult mice expressing channelrhodopsin (ChR2) in Dbx1(+) neurons, photoresponsive preBötC neurons had preinspiratory or inspiratory firing patterns associated with excitatory effects on burst timing and pattern. In transgenic adult mice expressing ChR2 in SST(+) neurons, photoresponsive preBötC neurons had inspiratory or postinspiratory firing patterns associated with excitatory responses on pattern or inhibitory responses that were largely eliminated by blocking synaptic inhibition within preBötC or by local viral infection limiting ChR2 expression to preBötC SST(+) neurons. We conclude that: (1) preinspiratory preBötC Dbx1(+) neurons are rhythmogenic, (2) inspiratory preBötC Dbx1(+) and SST(+) neurons primarily act to pattern respiratory motor output, and (3) SST(+)-neuron-mediated pathways and postsynaptic inhibition within preBötC modulate breathing pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facing the challenge of mammalian neural microcircuits: taking a few breaths may help.

Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory bre...

متن کامل

PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation.

Identification of the sites and mechanisms underlying the generation of respiratory rhythm is of longstanding interest to physiologists and neurobiologists. Recently, with the development of novel experimental preparations, especially in vitro en bloc and slice preparations of rodent brainstem, progress has been made In particular, a site in the ventrolateral medulla, the preBötzinger Complex, ...

متن کامل

Distinct inspiratory rhythm and pattern generating mechanisms in the preBötzinger complex.

In the mammalian respiratory central pattern generator, the preBötzinger complex (preBötC) produces rhythmic bursts that drive inspiratory motor output. Cellular mechanisms initiated by each burst are hypothesized to be necessary to determine the timing of the subsequent burst, playing a critical role in rhythmogenesis. To explore mechanisms relating inspiratory burst generation to rhythmogenes...

متن کامل

Differential roles for inhibition in excitatory rhythm generators

Unraveling the interplay of excitation and inhibition within rhythm-generating networks remains a fundamental issue in neuroscience. We use a biophysical model to investigate the different roles of local and long-range inhibition in the respiratory network, a key component of which is the pre-Bötzinger complex inspiratory microcircuit. Increasing inhibition within the microcircuit results in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2016